Modeling A Multi-Compartments Biological System with Membrane Computing

نویسندگان

  • Ravie Chandren
  • Mohd. Zin
چکیده

Problem statement: Most of the biological systems have been hierarchical in structure with processes interacting between different compartments. Membrane computing formalism has provided modeling capabilities in representing the structure of biological systems. Approach: This study was carried to investigate the modeling of a multi-compartment biological system by using membrane computing formalism. The hormone-induced calcium oscillations in liver cells which was modeled with ordinary differential equation was used as a case study. The membrane computing model of this case study was verified and validated by using simulation strategy of Gillespie algorithm and the method of model checking using probabilistic symbolic model checker. The results of membrane computing model were compared to the ordinary differential equation model. Results: The simulation and model checking of membrane computing model of the biological case study showed that the properties of the multi-compartments biological system could be preserved with the membrane computing model. Membrane computing model could also accommodate the structure and processes of the multi-compartments biological system which were absent in the ordinary differential equation model. Conclusion: Membrane computing model provides a better approach in representing a multicompartment system and able to sustain the basic properties of the system. However appropriate value of parameters to represent the rules of the processes of the membrane computing model to manage the stochastic behavior should be formulated to meet the performance of the biological system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model of the Quorum Sensing System In Genetically Engineered E.Coli Using Membrane Computing

Quorum sensing is the way bacteria communicate with each other; they release signaling molecules to their environment and other bacteria receive and recognize the signals. Many species of bacteria use the information obtained to coordinate their gene expression in response to the size of their population, which is known as Quorum Sensing. In this article, we present a novel model of a synthetic...

متن کامل

Experimenting the Simulation Strategy of Membrane Computing with Gillespie Algorithm by Using Two Biological Case Studies

Problem statement: The evolution rules of membrane computing have been applied in a nondeterministic and maximally parallel way. In order to capture these characteristics, Gillespie’s algorithm has been used as simulation strategy of membrane computing in simulating biological systems. Approach: This study was carried to discuss the simulation strategy of membrane computing with Gillespie algor...

متن کامل

Membrane systems for molecular computing and biological modelling

Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with models of computation inspired by biomolecular processes, which are seen as information-processing mechanisms. Membrane computing aims at defining computational models, called membrane systems or P systems, which abstract from the functioning and structure of the cell....

متن کامل

Modeling Static Biological Compartments with Beta-binders

We investigate the modeling of biological systems with static compartments through Beta-binders, a recently developed process calculus. Biological entities are represented as bio-processes and the calculus is extended with the notion of compartment. Entities can either be internal to compartments or reside on compartment borders. Movement in and out of compartments is requested by internal obje...

متن کامل

Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes

A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010